Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 985
Filtrar
2.
Front Microbiol ; 15: 1340275, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605706

RESUMO

Papaya leaf curl disease (PaLCuD) is widespread and classified in the genus begomovirus (Geminiviridae), disseminated by the vector whitefly Bemisia tabaci. RNA interference (RNAi)-based antiviral innate immunity stands as a pivotal defense mechanism and biological process in limiting viral genomes to manage plant diseases. The current study aims to identify and analyze Carica Papaya locus-derived capa-microRNAs with predicted potential for targeting divergent begomovirus species-encoded mRNAs using a 'four integrative in silico algorithms' approach. This research aims to experimentally activate the RNAi catalytic pathway using in silico-predicted endogenous capa-miRNAs and create papaya varieties capable of assessing potential resistance against begomovirus species and monitoring antiviral capabilities. This study identified 48 predicted papaya locus-derived candidates from 23 miRNA families, which were further investigated for targeting begomovirus genes. Premised all the four algorithms combined, capa-miR5021 was the most anticipated miRNA followed by capa-miR482, capa-miR5658, capa-miR530b, capa-miR3441.2, and capa-miR414 'effective' papaya locus-derived candidate capa-miRNA and respected putative binding sites for targets at the consensus nucleotide position. It was predicted to bind and target mostly to AC1 gene of the complementary strand and the AV1 gene of the virion strand of different begomovirus isolates, which were associated with replication-associated protein and encapsidation, respectively, during PaLCuD. These miRNAs were also found targeting betaC1 gene of betasatellite which were associated with retardation in leaf growth and developmental abnormalities with severe symptoms during begomovirus infection. To validate target prediction accuracy, we created an integrated Circos plot for comprehensive visualization of host-virus interaction. In silico-predicted papaya genome-wide miRNA-mediated begomovirus target gene regulatory network corroborated interactions that permit in vivo analysis, which could provide biological material and valuable evidence, leading to the development of begomovirus-resistant papaya plants. The integrative nature of our research positions it at the forefront of efforts to ensure the sustainable cultivation of papaya, particularly in the face of evolving pathogenic threats. As we move forward, the knowledge gained from this study provides a solid foundation for continued exploration and innovation in the field of papaya virology, and to the best of our knowledge, this study represents a groundbreaking endeavor, undertaken for the first time in the context of PaLCuD research.

3.
Front Plant Sci ; 15: 1333286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38606070

RESUMO

Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.

4.
J Exp Bot ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642102

RESUMO

The development of the embryo sac is an important factor affecting seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants. However, the function of the DEAD-box RNA helicase family genes on ES is poorly known in rice. Here, we characterized a rice DEAD-box protein, OsRH52A, which was localized in the nucleus and cytoplasm and highly expressed in the floral organs in rice. The knockout mutant, rh52a, displayed partial ES sterility, including degenerated ES (21.0%) and the presence of double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores (FM) near the chalazal end in one ovule, and 3.4% of DFG could fertilize via the sac near the micropylar pole in rh52a. OsRH52A was found to interact with OsMFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-seq identified 234 down-regulated differentially expressed genes (DEGs) associated with reproductive development, including the two genes, OsMSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrated that OsRH52A is essential for the development of the embryo sac and provided cytological evidence regarding the formation of DFG.

5.
ACS Omega ; 9(15): 17137-17142, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645367

RESUMO

In certain low-income nations, the hepatitis Delta virus and hepatitis B virus (HBV) pose a serious medical burden, where the prevalence of hepatitis B surface antigen (HBsAg) is greater than 8%. Especially in rural places, irregular diagnostic exams are the main restriction and reason for underestimation. Utilizing serum samples from a Pakistani isolate, an internal ELISA for the quick identification of anti-HDV was created, and the effectiveness of the test was compared to a commercial diagnostic kit. HDV-positive serum samples were collected, and a highly antigenic domain of HDAg antigen was derived from them. This antigenic HDAg was expressed in a bacterial expression system, purified by Ni-chromatography, and confirmed by SDS-PAGE and Western blot analysis. The purified antigen was utilized to develop an in-house ELISA assay for anti-HDV antibody detection of the patient's serum samples at very low cost. Purified antigens and positive and negative controls can detect anti-HDV (antibodies) in ELISA plates. The in-house developed kit's efficiency was compared with that of a commercial kit (Witech Inc., USA) by the mean optical density values of both kits. No significant difference was observed (a P value of 0.576) by applying statistical analysis. The newly developed in-house ELISA is equally efficient compared to commercial kits, and these may be useful in regular diagnostic laboratories, especially for analyzing local isolates.

6.
Cureus ; 16(2): e54702, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38524035

RESUMO

Objective The objectives of this study were to determine the frequency of the clinical spectrum of diseases in patients with macrocytosis and to summarize the diagnostic evaluation of patients found to have macrocytosis on laboratory testing. Background This was a cross-sectional study that took place at the Department of Medicine in Combined Military Hospital, Rawalpindi, Pakistan, from January to June 2023. Methodology One hundred and five patients with macrocytosis with mean corpuscular volume (MCV) values > 100 fL (80 to 100 fL) were inducted as per inclusion and exclusion criteria. Informed consent was obtained from all patients. Complete blood counts (CBC), peripheral blood film, serum vitamin B12 levels, serum folate levels, renal function tests (RFTs), liver function tests (LFTs), and thyroid function tests (TFTs) were performed during the assessment. Results The commonest cause of macrocytosis was vitamin B12 deficiency followed by folate deficiency, combined vitamin B12 and folate deficiency, and other causes were also found in a few cases. Conclusion Serum vitamin B12 and folate deficiency are the most common preventable causes of macrocytosis.

7.
Plant Signal Behav ; 19(1): 2318513, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38526224

RESUMO

Plant growth-promoting rhizobacteria (PGPRs) have been utilized to immobilize heavy metals, limiting their translocation in metal contaminated settings. However, studies on the mechanisms and interactions that elucidate how PGPRs mediate Nickel (Ni) tolerance in plants are rare. Thus, in this study we investigated how two pre-characterized heavy metal tolerant isolates of Morganella morganii (ABT9 and ABT3) improve Ni stress tolerance in Arabidopsis while enhancing its growth and yield. Arabidopsis seedlings were grown for five weeks in control/Ni contaminated (control, 1.5 mM and 2.5 mM) potted soil, in the presence or absence of PGPRs. Plant growth characteristics, quantum yield, and antioxidative enzymatic activities were analyzed to assess the influence of PGPRs on plant physiology. Oxidative stress tolerance was quantified by measuring MDA accumulation in Arabidopsis plants. As expected, Ni stress substantially reduced plant growth (shoot and root fresh weight by 53.25% and 58.77%, dry weight by 49.80% and 57.41% and length by 47.16% and 64.63% over control), chlorophyll content and quantum yield (by 40.21% and 54.37% over control). It also increased MDA content by 84.28% at higher (2.5 mM) Ni concentrations. In contrast, inoculation with M. morganii led to significant improvements in leaf chlorophyll, quantum yield, and Arabidopsis biomass production. The mitigation of adverse effects of Ni stress on biomass observed in M. morganii-inoculated plants was attributed to the enhancement of antioxidative enzyme activities compared to Ni-treated plants. This upregulation of the antioxidative defense mechanism mitigated Ni-induced oxidative stress, leading to improved performance of the photosynthetic machinery, which, in turn, enhanced chlorophyll content and quantum yield. Understanding the underlying mechanisms of these tolerance-inducing processes will help to complete the picture of PGPRs-mediated defense signaling. Thus, it suggests that M. morganii PGPRs candidate can potentially be utilized for plant growth promotion by reducing oxidative stress via upregulating antioxidant defense systems in Ni-contaminated soils and reducing Ni metal uptake.


Assuntos
Arabidopsis , Morganella morganii , Níquel/farmacologia , Antioxidantes , Clorofila
8.
Carbohydr Polym ; 334: 122023, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553222

RESUMO

Rice blast disease (RBD) caused by Magnaporthe oryzae, threaten food security by cutting agricultural output. Nano agrochemicals are now perceived as sustainable, cost-effective alternatives to traditional pesticides. This study investigated bioformulation of moringa chitosan nanoparticles (M-CsNPs) and their mechanisms for suppressing RBD while minimizing toxic effects on the microenvironment. M-CsNPs, sized 46 nm with semi-spherical morphology, significantly suppressed pathogen growth, integrity, and colonization at 200 mg L-1in vitro. Greenhouse tests with foliar exposure to the same concentration resulted in a substantial 77.7 % reduction in RBD, enhancing antioxidant enzyme activity and plant health. Furthermore, M-CsNPs improved photosynthesis, gas exchange, and the nutritional profile of diseased rice plants. RNA-seq analysis highlighted upregulated defense-related genes in treated rice plants. Metagenomic study showcased reshaping of the rice microbiome, reducing Magnaporthe abundance by 93.5 %. Both healthy and diseased rice plants showed increased microbial diversity, particularly favoring specific beneficial species Thiobacillus, Nitrospira, Nocardioides, and Sphingomicrobium in the rhizosphere and Azonexus, Agarivorans, and Bradyrhizobium in the phyllosphere. This comprehensive study unravels the diverse mechanisms by which M-CsNPs interact with plants and pathogens, curbing M. oryzae damage, promoting plant growth, and modulating the rice microbiome. It underscores the significant potential for effective plant disease management.


Assuntos
Quitosana , Microbiota , Oryza , Resistência à Doença , Oryza/genética , Quitosana/farmacologia , Bactérias , Doenças das Plantas/prevenção & controle
9.
Sci Rep ; 14(1): 5986, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472251

RESUMO

Lead (Pb) is toxic to the development and growth of rice plants. Nanoparticles (NPs) have been considered one of the efficient remediation techniques to mitigate Pb stress in plants. Therefore, a study was carried out to examine the underlying mechanism of iron (Fe) and silicon (Si) nanoparticle-induced Pb toxicity alleviation in rice seedlings. Si-NPs (2.5 mM) and Fe-NPs (25 mg L-1) were applied alone and in combination to rice plants grown without (control; no Pb stress) and with (100 µM) Pb concentration. Our results revealed that Pb toxicity severely affected all rice growth-related traits, such as inhibited root fresh weight (42%), shoot length (24%), and chlorophyll b contents (26%). Moreover, a substantial amount of Pb was translocated to the above-ground parts of plants, which caused a disturbance in the antioxidative enzyme activities. However, the synergetic use of Fe- and Si-NPs reduced the Pb contents in the upper part of plants by 27%. It reduced the lethal impact of Pb on roots and shoots growth parameters by increasing shoot length (40%), shoot fresh weight (48%), and roots fresh weight (31%). Both Si and Fe-NPs synergistic application significantly elevated superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione (GSH) concentrations by 114%, 186%, 135%, and 151%, respectively, compared to plants subjected to Pb stress alone. The toxicity of Pb resulted in several cellular abnormalities and altered the expression levels of metal transporters and antioxidant genes. We conclude that the synergistic application of Si and Fe-NPs can be deemed favorable, environmentally promising, and cost-effective for reducing Pb deadliness in rice crops and reclaiming Pb-polluted soils.


Assuntos
Nanopartículas , Oryza , Poluentes do Solo , Oryza/genética , Silício/farmacologia , Chumbo/metabolismo , Ferro/metabolismo , Antioxidantes/metabolismo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Poluentes do Solo/metabolismo
10.
Plants (Basel) ; 13(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38475425

RESUMO

Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.

11.
Chronic Dis Transl Med ; 10(1): 75-77, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38450301

RESUMO

Estimated age-adjusted comparative diabetes prevalence in adults (20-79 years) in Pakistan from the year 2011 to 2021.

12.
J Coll Physicians Surg Pak ; 34(3): 308-312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462866

RESUMO

OBJECTIVE: To evaluate the subjects of possible ocular surface dysfunction in dry eye syndrome (DES) by using Ocular Surface Disease Index (OSDI) questionnaire and correlating it with the tear film break-up time (TBUT) test and Schirmer test. STUDY DESIGN: Cross-sectional, observational study. Place and Duration of the Study: Armed Forces Institute of Ophthalmology (AFIO), National University of Medical Sciences (NUMS), Rawalpindi, Pakistan, from March to August 2022. METHODOLOGY:  Demographics and detailed ophthalmological examinations were carried out for all the patients using slit lamp biomicroscopy. The questionnaire for OSDI was filled to calculate the OSDI score, Schirmer test, and TBUT test were performed for all patients. For statistical analysis, the mean test score of both eyes was used. Correlations between tests were drawn and reported. RESULTS: This study was conducted on ninety-seven adult participants with mean age of 31.3 ± 10.7 years, comprising of forty-five (46.4%) females and fifty-two (53.6%) males. The mean score for OSDI, TBUT, and Schirmer test was found to be 16.03 ± 14.22 (range 0 - 62.5), 9.63 ± 4.54 seconds (range 2.5 - 22.5), and 24.6 ± 10.85 mm (range 4.5 - 35.5), respectively. An inverse correlation was found between the OSDI and Schirmer, and OSDI and TBUT test scores which was also statistically significant. Schirmer and TBUT test scores also showed significant correlation. CONCLUSION: The OSDI is quick, precise, feasible for self-assessment, and non-invasive standardised tool for evaluating symptoms of dry eye disease, hence it can aid in the diagnosis of DES. KEY WORDS: Dry eye syndrome, Ocular surface, Tear flim break-up time, Schirmer test.


Assuntos
Síndromes do Olho Seco , Adulto , Masculino , Feminino , Humanos , Adulto Jovem , Síndromes do Olho Seco/diagnóstico , Estudos Transversais , Lágrimas , Olho , Inquéritos e Questionários
13.
Environ Sci Pollut Res Int ; 31(16): 23591-23609, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418792

RESUMO

Arsenic (As)-induced environmental pollution and associated health risks are recognized on a global level. Here the impact of cotton shells derived biochar (BC) and silicon-nanoparticles loaded biochar (nano-Si-BC) was explored on soil As immobilization and its phytotoxicity in barley plants in a greenhouse study. The barley plants were grown in a sandy loam soil with varying concentrations of BC and nano-Si-BC (0, 1, and 2%), along with different levels of As (0, 5, 10, and 20 mg kg-1). The FTIR spectroscopy, SEM-EDX, and XRD were used to characterize BC and nano-Si-BC. Results revealed that As treatment had a negative impact on barley plant development, grain yield, physiology, and anti-oxidative response. However, the addition of nano-Si-BC led to a 71% reduction in shoot As concentration compared to the control with 20 mg kg-1 of As, while BC alone resulted in a 51% decline. Furthermore, the 2% nano-Si-BC increased grain yield by 94% compared to control and 28% compared to BC. The addition of 2% nano-Si-BC to As-contaminated soil reduced oxidative stress (34% H2O2 and 48% MDA content) and enhanced plant As tolerance (92% peroxidase and 46% Ascorbate peroxidase activity). The chlorophyll concentration in barley plants decreased due to oxidative stress. Additionally, the incorporation of 2% nano-Si-BC resulted in a 76% reduction in water soluble and NaHCO3 extractable As. It is concluded that the use of BC or nano-Si-BC in As contaminated soil for barley resulted in a low human health risk (HQ < 1), as it effectively immobilized As and promoted higher activity of antioxidants.


Assuntos
Arsênio , Hordeum , Nanopartículas , Poluentes do Solo , Humanos , Silício/análise , Arsênio/análise , Hordeum/metabolismo , Solo/química , Peróxido de Hidrogênio/análise , Antioxidantes/metabolismo , Carvão Vegetal/química , Grão Comestível/química , Poluentes do Solo/análise
14.
Environ Pollut ; 346: 123648, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38408504

RESUMO

Municipal wastewater is ubiquitously laden with myriad pollutants discharged primarily from a combination of domestic and industrial activities. These heterogeneous pollutants are threating the natural environments when the traditional activated sludge system fails sporadically to reduce the pollutants' toxicities. Besides, the activated sludge system is very energy intensive, bringing conundrums for decarbonization. This research endeavoured to employ Chlorella vulgaris sp. In converting pollutants from municipal wastewater into hydrogen via alternate light and dark fermentative process. The microalgae in attached form onto 1 cm3 of polyurethane foam cubes were adopted in optimizing light intensity and photoperiod during the light exposure duration. The highest hydrogen production was recorded at 52 mL amidst the synergistic light intensity and photoperiod of 200 µmolm-2s-1 and 12:12 h (light:dark h), respectively. At this lighting condition, the removals of chemical oxygen demand (COD) and ammoniacal nitrogen were both achieved at about 80%. The sustainability of microalgal fermentative performances was verified in recyclability study using similar immobilization support material. There were negligible diminishments of hydrogen production as well as both COD and ammoniacal nitrogen removals after five cycles, heralding inconsequential microalgal cells' washout from the polyurethane support when replacing the municipal wastewater medium at each cycle. The collected dataset was finally modelled into enhanced Monod equation aided by Python software tool of machine learning. The derived model was capable to predict the performances of microalgae to execute the fermentative process in producing hydrogen while subsisting municipal wastewater at arbitrary photoperiod. The enhanced model had a best fitting of R2 of 0.9857 as validated using an independent dataset. Concisely, the outcomes had contributed towards the advancement of municipal wastewater treatment via microalgal fermentative process in producing green hydrogen as a clean energy source to decarbonize the wastewater treatment facilities.


Assuntos
Compostos de Amônio , Chlorella vulgaris , Microalgas , Águas Residuárias , Esgotos , Fotoperíodo , Nitrogênio , Hidrogênio , Biomassa
15.
Biomed Phys Eng Express ; 10(3)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38350128

RESUMO

The paper aims to explore the current state of understanding surrounding in silico oral modelling. This involves exploring methodologies, technologies and approaches pertaining to the modelling of the whole oral cavity; both internally and externally visible structures that may be relevant or appropriate to oral actions. Such a model could be referred to as a 'complete model' which includes consideration of a full set of facial features (i.e. not only mouth) as well as synergistic stimuli such as audio and facial thermal data. 3D modelling technologies capable of accurately and efficiently capturing a complete representation of the mouth for an individual have broad applications in the study of oral actions, due to their cost-effectiveness and time efficiency. This review delves into the field of clinical phonetics to classify oral actions pertaining to both speech and non-speech movements, identifying how the various vocal organs play a role in the articulatory and masticatory process. Vitaly, it provides a summation of 12 articulatory recording methods, forming a tool to be used by researchers in identifying which method of recording is appropriate for their work. After addressing the cost and resource-intensive limitations of existing methods, a new system of modelling is proposed that leverages external to internal correlation modelling techniques to create a more efficient models of the oral cavity. The vision is that the outcomes will be applicable to a broad spectrum of oral functions related to physiology, health and wellbeing, including speech, oral processing of foods as well as dental health. The applications may span from speech correction, designing foods for the aging population, whilst in the dental field we would be able to gain information about patient's oral actions that would become part of creating a personalised dental treatment plan.


Assuntos
Boca , Fala , Humanos , Idoso , Boca/fisiologia , Fala/fisiologia , Fonética
16.
RSC Adv ; 14(10): 7112-7123, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38419676

RESUMO

Escherichia coli biofilms are a major cause of gastrointestinal tract diseases, such as esophageal, stomach and intestinal diseases. Nowadays, these are the most commonly occurring diseases caused by consuming contaminated food. In this study, we evaluated the efficacy of probiotics in controlling multidrug-resistant E. coli and reducing its ability to form biofilms. Our results substantiate the effective use of probiotics as antimicrobial alternatives and to eradicate biofilms formed by multidrug-resistant E. coli. In this research, surface enhanced Raman spectroscopy (SERS) was utilized to identify and evaluate Escherichia coli biofilms and their response to the varying concentrations of the organometallic compound bis(1,3-dihexylimidazole-2-yl) silver(i) hexafluorophosphate (v). Given the escalating challenge of antibiotic resistance in bacteria that form biofilms, understanding the impact of potential antibiotic agents is crucial for the healthcare sector. The combination of SERS with principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) enabled the detection and characterization of the biofilm, providing insights into the biochemical changes induced by the antibiotic candidate. The identified SERS spectral features served as indicators for elucidating the mode of action of the potential drug on the biofilm. Through PCA and PLS-DA, metabolic variations allowing the differentiation and classification of unexposed biofilms and biofilms exposed to different concentrations of the synthesized antibiotic were successfully identified, with 95% specificity, 96% sensitivity, and a 0.75 area under the curve (AUC). This research underscores the efficiency of surface enhanced Raman spectroscopy in differentiating the impact of potential antibiotic agents on E. coli biofilms.

17.
Plant Foods Hum Nutr ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363439

RESUMO

Red dragon fruit is gaining popularity globally due to its nutritional value and bioactive components. The study aimed to assess the phytochemical, nutritional composition, antioxidant, antibacterial, and cytotoxic properties of extracts from the South Chinese red dragon fruit peel, flesh, and seeds. Extract fractions with increasing polarity (ethyl acetate

19.
Trop Anim Health Prod ; 56(2): 61, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38276987

RESUMO

The buffalo (Bubalus bubalis) is a species of worldwide importance, raised to produce milk, meat, and hides, and often used as a working animal in rural contexts with low access to hi-tech solutions. In the present study, 100 lactating buffaloes (50 primiparous and 50 pluriparous) of five popular breeds were recruited to characterize and compare teat morphology. In particular, the focus was put on the Nili Ravi, Mediterranean, Egyptian, Bulgarian Murrah, and Azeri buffaloes raised in Pakistan, Italy, Egypt, Bulgaria, and Iran, respectively. In all countries, a longitudinal cross-section ultrasound was obtained before the milking to measure teat parameters at individual level: overall, teat canal length (TCL) averaged 24.13 mm, teat diameter (TD) 30.46 mm, cisternal diameter (CD) 17.80 mm, and teat wall (TW) 7.12 mm. The most variable trait across breeds was TCL which was positively correlated with CD and TD and negatively with TW, regardless of the teat position (front/rear or left/right). A strong negative correlation was found between TW and CD (- 0.43). The analysis of variance revealed that the fixed effect of breed significantly affected all the traits except TD. In fact, Bulgarian Murrah, Azeri, and Egyptian buffaloes presented the greatest estimate of TCL, whereas NR the smallest (14.70 mm). The TW was maximum in Nili Ravi, Egyptian, and Mediterranean buffaloes, with estimates equal to 8.19, 7.59, and 8.74 mm, respectively. Nili Ravi also showed the greatest TL (82.39 mm). In terms of CD, the lowest least square mean was that of Mediterranean buffaloes (12.14 mm). Primiparous and pluriparous buffaloes differed in terms of TD, TW, and TL, with older animals presenting the highest least square mean. In terms of position, instead, significant differences were observed for TD, CD, and TL when comparing front and rear teats, as left and right teats did not differ. Teat anatomy includes a set of heritable morphological features and is therefore breed-dependent. Differences presented in this study could be attributed to the divergent breeding objective and selective pressure across the five breeds; e.g., in some cases such as Mediterranean buffalo, selection for decades was oriented to improve milk production and milkability and achieve optimal conformation for mechanical milking. A better understanding of the mammary gland anatomical descriptors can be informative of the history of a breed and could provide useful insights to guide possible selection.


Assuntos
Búfalos , Lactação , Feminino , Animais , Leite , Fenótipo , Glândulas Mamárias Animais/diagnóstico por imagem , Glândulas Mamárias Animais/anatomia & histologia
20.
Int J Phytoremediation ; : 1-10, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265045

RESUMO

There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.


Till date, abundant research has focused on plant biophysicochemical responses to different types of pollutants. However, the majority of these studies dealt with pollutant exposure to mature plants (generally after a vegetative growth period of 1­2 weeks). Despite significant research, there are still limited data regarding the biophysicochemical responses of plants at their early stages of germination and growth. In fact, stresses at germination or at an early stage of growth can be highly fatal and may significantly affect the ultimate plant growth and potential to remediate the contaminated sites. Therefore, the current study deals with the exposure of germinating pea seedlings to arsenic (As) stress under varied amendments. This experimental plan helped to understand the initial biophysicochemical changes induced in pea plants under As stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...